Building Streaming Data Pipeline using Functional applications
This recipe describes how to build simple function-based applications by using Spring Cloud Stream and have them embedded into the Spring Cloud Data Flow Streaming data pipeline.
Overview
We create a time-source
application that produces the current date or timestamp at a configured interval and sends it to the messaging middleware. We also create a sink log-sink
application to consume the published messages from the middleware.
For more information on how Spring Cloud Stream provides this support, see the Spring Cloud Stream documentation.
With Spring Cloud Stream 3.x as the dependency, you can write the Source
application by using java.util.function.Supplier
, as follows:
package com.example.timesource;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.function.Supplier;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
@SpringBootApplication
public class TimeSourceApplication {
@Bean
public Supplier<String> timeSupplier() {
SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
return () -> {
return sdf.format(new Date());
};
}
public static void main(String[] args) {
SpringApplication.run(TimeSourceApplication.class, args);
}
}
Spring Cloud Stream provides spring.cloud.stream.poller.DefaultPollerProperties
, which you can configure to trigger the Supplier
function, timeSupplier()
.
For instance, you can use --spring.cloud.stream.poller.fixed-delay=5000
property to trigger this Supplier
function every five seconds.
Similarly, you can write a Sink
application using java.util.function.Consumer
, as follows:
package com.example.logsink;
import java.util.function.Consumer;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.integration.dsl.IntegrationFlow;
import org.springframework.integration.dsl.IntegrationFlows;
import org.springframework.integration.handler.LoggingHandler;
import org.springframework.messaging.Message;
@SpringBootApplication
public class LogSinkApplication {
@Bean
IntegrationFlow logConsumerFlow() {
return IntegrationFlows.from(MessageConsumer.class, (gateway) -> gateway.beanName("logConsumer"))
.handle((payload, headers) -> {
if (payload instanceof byte[]) {
return new String((byte[]) payload);
}
return payload;
})
.log(LoggingHandler.Level.INFO, "log-consumer", "payload")
.get();
}
private interface MessageConsumer extends Consumer<Message<?>> {}
public static void main(String[] args) {
SpringApplication.run(LogSinkApplication.class, args);
}
}
After building both the time-source
and the log-sink
applications, you can register these applications into Spring Cloud Data Flow.
Suppose you create a stream by using these applications, as follows:
ticktock=time-source | log-sink
You need to make sure that the functional bindings of these applications are mapped to the appropriate output
and input
names that Spring Cloud Data Flow understands.
What this means is that you need to configure the following properties when deploying the stream:
app.time-source.spring.cloud.stream.function.bindings.timeSupplier-out-0=output
app.log-sink.spring.cloud.stream.function.bindings.logConsumer-in-0=input
The timeSupplier
function's output and logConsumer
function's input need to be mapped to the outbound and inbound names that Spring Cloud Data Flow understands: output
and input
.
Along with this, you also need to provide a way to trigger the Supplier
function -- in this case:
app.time-source.spring.cloud.stream.poller.fixed-delay=5000
If you run this by using local
deployer, you can also inherit the logs from the applications into the Skipper server log so that you can see the ticktock
stream messages at the log-sink
consumer at Skipper server log:
deployer.*.local.inherit-logging=true